Journal of Organometallic Chemistry, 117 (1976) C21–C22 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

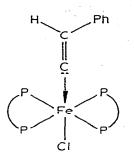
A STABLE CATIONIC COMPLEX OF IRON CONTAINING THE PHENYL-VINYLIDENE LIGAND

JOHN M. BELLERBY and MARTIN J. MAYS*

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain) (Received June 9th, 1976)

Summary

The cationic complex *trans*-[FeCl(C=CHPh)(depe)₂]⁺ (depe = bis(diethyl-phosphino)ethane has been prepared by interaction of *trans*-[FeCl₂(depe)₂] with phenylacetylene in methanol solution in the presence of NaX (X = BPh₄ or PF₆).


The reaction of a methanolic solution of trans-[PtCl(CH₃)L₂] (L = P(CH₃)₂-C₆H₅ or As(CH₃)₃) with monoalkyl- or monoaryl-acetylenes in the presence of AgPF₆ gives methoxy—carbene complexes of the type trans-[PtCH₃ {C(OCH₃)-CH₂R }L₂] [1]. This reaction has been postulated to proceed via a vinylidene intermediate of the type Pt—C⁺=CHR but at the time this suggestion was made no stable vinylidene complex of this type was known. Recently, however, a manganese complex containing a phenylvinylidene ligand has been described [2]. We now report the synthesis and some spectroscopic characteristics of a stable cationic phenylvinylidene complex of iron.

Reaction of phenylacetylene with a methanol solution of trans-[FeCl₂(depe)₂] under argon at 20°C for 1 hour followed by addition of NaPF₆ in methanol gave the dark green salt trans-[FeCl(C₂HPh)(depe)₂]PF₆ (depe = 1,2 bis(diethyl-phosphino)ethane) which was recrystallised from methanol. Found: C, 44.9; H, 7.0; P, 19.9. C₂₈H₅₄P₅F₆ClFe calcd.: C, 44.9; H, 7.2; P, 20.6%. The corresponding BPh₄⁻ salt was also prepared by addition of NaBPh₄ and recrystallisation of the precipitated complex from acetone. Both compounds are stable in dry air and conductivity measurements on the BPh₄⁻ salt in nitromethane indicate that it is a 1:1 electrolyte.

The ¹H NMR spectrum of the tetraphenylborate salt (CH₂Cl₂ solution) shows absorptions at τ 3.0 ppm, m, 25H (aromatic protons), τ 8–9 ppm, m, 48H (depe protons) and 5.08 ppm, q, 1H (J(H–P) 4 Hz). This last resonance we assign to the olefinic hydrogen atom on the vinylidene ligand bonded as in structure I. The

^{*}To whom correspondence should be addressed.

equivalent coupling to the four phosphorus atoms indicates that there is free rotation about the Fe-C bond.

The IR spectra of the two salts (Nujol mulls) show no bands in the 2000 cm⁻¹ region attributable to $\nu(C=C)$. However, four bands of medium intensity appear at 1609, 1595, 1588 and 1572 cm⁻¹ which are not present in the IR spectra of other complexes of the type *trans*-[FeCIL(depe)₂]⁺ [3] and we assign these bands to coupled $\nu(C=C)$ modes within the phenylvinylidene ligand.

The Mössbauer parameters for *trans*-[FeCl(C=CHPh)(depe)₂]⁺ are given in Table 1 together with those for two related complexes.

TABLE 1

MÖSSBAUER PARAMETERS FOR trans-[FeCl(C=CHPh)(depe)2] ⁺ AND TWO RELATED COMPLEXES			
Complex	δ	Δ	Ref.
trans-[FeCl(C=CHPh)(depe) ₂] ⁺ trans-[FeCl(CO)(dmpe) ₂] ^{+a} trans-[FeCl(NO)(depe) ₂] ²⁺	0.25	1.22	This work
trans-[FeCl(CO)(dmpe) ₂] ^{+a}	0.33	0.88	3
trans-[FeCl(NO)(depe) ₂] ²⁺	0.26	2.15	3

 $a_{dmpe} = (CH_3)_2 PCH_2 CH_2 P(CH_3)_2.$

The low value of δ for the vinylidene complex indicates that (C=CHPh) is either a good σ -electron donor or a good π -acceptor ligand, comparable to NO⁺ in its effect on the s-electron density at the ⁵⁷Fe nucleus. Making the reasonable assumption that the sign of Δ is positive [4] it may be concluded that (C=CHPh) is a relatively good π -acceptor ligand, although not as good as NO⁺. The validity of the conclusion is supported by the X-ray structure analysis for [η -C₅H₅Mn(CO)₂-(C=CHPh)] which shows that the Mn—C bond length is much shorter than a Mn—C single bond and even shorter than the Mn—C (carbene) bond in [η -C₅H₅-Mn(CO)₂ {C(Ph)COPh}].

The reactions of the iron complex are under study. It is noteworthy, that it shows no tendency to react with alcohols to give alkoxycarbene complexes.

References

- 1 M.H. Chisholm and H.C. Clark, J. Amer. Chem. Soc., 94 (1972) 1532.
- 2 A.N. Nesmeyanov, G.G. Aleksandrov, A.B. Antonova, K.N. Anisimov, N.E. Kolobova and Yu.T. Struchov, J. Organometal. Chem., 110 (1976) C36.
- 3 J.M. Bellerby, M.J. Mays and P.L. Sears, J. Chem. Soc. Dalton Trans., in press.
- 4 J.M. Bellerby and M.J. Mays, J. Chem. Soc. Dalton Trans., (1975) 1281.